Process Operations with Uncertainty and Integration Considerations
نویسندگان
چکیده
......................................................................................................................................................... ii Acknowledgements ........................................................................................................................................iv List of tables ...................................................................................................................................................ix List of illustrations .........................................................................................................................................xi Chapter 1 Introduction ........................................................................................................................ 1 1.1 Planning and scheduling in the process industry .................................................................. 1 1.2 Modeling and optimization for planning and scheduling ..................................................... 3 1.3 Problems and challenges ...................................................................................................... 4 1.3.1 Uncertainty issue ......................................................................................................... 5 1.3.2 Integration issue ........................................................................................................... 6 1.4 Project objectives.................................................................................................................. 7 Chapter 2 Uncertainty Analysis with Parametric Programming ................................................... 10 2.1 Introduction ........................................................................................................................ 10 2.2 Parametric programming algorithm .................................................................................... 12 2.2.1 Problem definition ..................................................................................................... 12 2.2.2 Local parametric solution algorithm .......................................................................... 13 2.2.3 Exploring the parameter space ................................................................................... 16 2.3 Uncertainty analysis for scheduling problem ..................................................................... 21 2.4 Summary ............................................................................................................................ 29 Chapter 3 Robust Preventive Scheduling ......................................................................................... 31 3.1 Introduction ........................................................................................................................ 31 3.2 Robust optimization ............................................................................................................ 34 3.2.1 Soyster’s formulation ................................................................................................. 35 3.2.2 Ben-Tal and Nemirovski’s formulation ..................................................................... 36 3.2.3 Bertsimas and Sim’s formulation............................................................................... 37 3.2.4 Comparison of different formulations ....................................................................... 40 3.3 Robust scheduling .............................................................................................................. 41 vii 3.3.1 Price uncertainty ........................................................................................................ 42 3.3.2 Processing time uncertainty ....................................................................................... 43 3.3.3 Demand uncertainty ................................................................................................... 43 3.4 Examples ............................................................................................................................ 44 3.4.1 Example 1 .................................................................................................................. 44 3.4.2 Example 2 .................................................................................................................. 50 3.5 Summary ............................................................................................................................ 53 Chapter 4 Reactive Scheduling .......................................................................................................... 55 4.1 Introduction ........................................................................................................................ 55 4.2 Reactive scheduling formulation ........................................................................................ 58 4.2.1 General idea ............................................................................................................... 58 4.2.2 Rush order .................................................................................................................. 59 4.2.3 Machine breakdown ................................................................................................... 62 4.3 Examples ............................................................................................................................ 64 4.4 Summary ............................................................................................................................ 76 Chapter 5 Integration of Planning and Scheduling ......................................................................... 77 5.1 Introduction ........................................................................................................................ 77 5.2 Problem structure ............................................................................................................... 80 5.3 Augmented Lagrangian Optimization algorithm ................................................................ 82 5.4 Decomposition strategy ...................................................................................................... 85 5.4.1 Diagonal Quadratic Approximation ........................................................................... 86 5.4.2 Two-Level optimization ............................................................................................ 87 5.5 Examples ............................................................................................................................ 90 5.6 Summaries .......................................................................................................................... 96 Chapter 6 Rolling Horizon Optimization ......................................................................................... 99 6.1 Introduction ........................................................................................................................ 99 6.2 Rolling horizon framework .............................................................................................. 102 6.3 Production capacity model derivation .............................................................................. 108 -
منابع مشابه
Towards Supply Chain Planning Integration: Uncertainty Analysis Using Fuzzy Mathematical Programming Approach in a Plastic Forming Company
Affected by globalization and increased complexity, supply chain managers have learned about the importance of Sales and Operations Planning (S&OP). However, in large scale supply chains, S&OP has received little attention, by both academics and practitioners. The purpose of this manuscript is to investigate the advantages of S&OP process using a mathematical modeling approach in a large scale ...
متن کاملA multi-product vehicle routing scheduling model with time window constraints for cross docking system under uncertainty: A fuzzy possibilistic-stochastic programming
Mathematical modeling of supply chain operations has proven to be one of the most complex tasks in the field of operations management and operations research. Despite the abundance of several modeling proposals in the literature; for vast majority of them, no effective universal application is conceived. This issue renders the proposed mathematical models inapplicable due largely to the fact th...
متن کاملIntegration of QFD, AHP, and LPP methods in supplier development problems under uncertainty
Quality function deployment (QFD) is a customer-driven approach, widely used to develop or process new product to maximize customer satisfaction. Last researches used linear physical programming (LPP) procedure to optimize QFD; however, QFD issue involved uncertainties, or fuzziness, which requires taking them into account for more realistic study. In this paper, a set of fuzzy data is used to ...
متن کاملDesign of a reliable supply chain network with responsiveness considerations under uncertainty: case study of an Iranian tire manufacturer
This paper proposes a bi-objective reliable supply chain network design that immunizes the network against different sources of uncertainties. In this regard, scenario based stochastic programming method is applied to model different disruption scenarios affecting accurate performance of network stages. Also, reliable and unreliable facilities are suggested for lessening vulnerability of networ...
متن کاملOptimal Scheduling of Coordinated Wind-Pumped Storage-Thermal System Considering Environmental Emission Based on GA Based Heuristic Optimization Algorithm
The integration of renewable wind and pumped storage with thermal power generation allows for dispatch of wind energy by generation companies (GENCOs) interested in participation in energy and ancillary services markets. However, to realize the maximum economic profit, optimal coordination and accounting for reduction in cost for environmental emission is necessary. The goal of this study is to...
متن کامل